skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Yongseok"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This work presents SPHINCSLET, the first fully standard-compliant and area-efficient hardware implementation of the SLH-DSA algorithm, formerly known as SPHINCS+, a post-quantum digital signature scheme. SPHINCSLET is designed to be parameterizable across different security levels and hash functions, offering a balanced trade-off between area efficiency and performance. Existing hardware implementations either feature a large area footprint to achieve fast signing and verification or adopt a coprocessor-based approach that significantly slows down these operations. SPHINCSLET addresses this gap by delivering a 4.7 × reduction in area compared to high-speed designs while achieving a 2.5 × to 5 × improvement in signing time over the most efficient coprocessor-based designs for a SHAKE256-based SPHINCS+ implementation. The SHAKE256-based SPHINCS+ FPGA implementation targeting the AMD Artix-7 requires fewer than 10.8K LUTs for any security level of SLH-DSA. Furthermore, the SHA-2-based SPHINCS+ implementation achieves a 2 × to 4 × speedup in signature generation across various security levels compared to existing SLH-DSA hardware, all while maintaining a compact area footprint of 6K to 15K LUTs. This makes it the fastest SHA-2-based SLH-DSA implementation to date. With an optimized balance of area and performance, SPHINCSLET can assist resource-constrained devices in transitioning to post-quantum cryptography. 
    more » « less
    Free, publicly-accessible full text available April 7, 2026
  2. Abstract To conduct a comprehensive demographic study of microlensing planets, it is essential to detect all planetary signals that exceed a predefined threshold through a detailed analysis of survey data. We reanalyzed previous data from the Korea Microlensing Telescope Network survey to search for weak planetary signals in lensing events involving faint source stars. For events with potential short-term anomalies identified in the initial search, we validated the signals using rereduced data and conducted detailed modeling of the anomalous events. This process led to the discovery of four planetary events: KMT-2017-BLG-2197, KMT-2022-BLG-1790, KMT-2022-BLG-2076, and KMT-2023-BLG-2209. For all these events, the modeling resulted in two solutions due to the well-known inner–outer degeneracy. The estimated masses of the planets and their hosts are approximately (Mp/MJ, Mh/M) ∼ (0.36, 7.9) for KMT-2017-BLG-2197L, ∼(0.6, 1.7) for KMT-2022-BLG-1790L, ∼(0.67, 0.9) for KMT-2022-BLG-2076L, and ∼(0.73, 0.8) for KMT-2023-BLG-2209L. The planetary systems KMT-2017-BLG-2197L and KMT-2022-BLG-1790L are likely located in the Galactic bulge, while KMT-2022-BLG-2076L and KMT-2023-BLG-2209L are more likely situated in the disk. 
    more » « less
    Free, publicly-accessible full text available May 2, 2026
  3. Abstract To exhume the buried signatures of free-floating planets (FFPs) with small angular Einstein radiusθE, we build a new full-frame difference image pipeline for the Korean Microlensing Telescope Network (KMTNet) survey based on the newly optimized pySIS package. We introduce the detailed processes of the new pipeline, including frame registration, difference image analysis, and light curve extraction. To test this pipeline, we extract one-year light curves for 483,068 stars withI ≲ 17 and conduct a model-independent search for microlensing events. The search finds 36 microlensing events, including five new events and six events discovered by other collaborations but missed by previous KMTNet searches. We find that the light curves from the new pipeline are precise enough to be sensitive to FFPs withθE ∼ 1μas. Using the new pipeline, a complete FFP search on the eight-year KMTNet images can be finished within six months and then yield the FFP mass function. The new pipeline can be used for a new KMTNet AlertFinder system, with significantly reduced false positives. 
    more » « less
    Free, publicly-accessible full text available June 1, 2026
  4. Aims.We investigate microlensing data collected by the Korea Microlensing Telescope Network (KMTNet) survey during the 2021 and 2022 seasons to identify planetary lensing events displaying a consistent anomalous pattern. Our investigation reveals that the light curves of two lensing events, KMT-2021-BLG-2609 and KMT-2022-BLG-0303, exhibit a similar anomaly, in which short-term positive deviations appear on the sides of the low-magnification lensing light curves. Methods.To unravel the nature of these anomalies, we meticulously analyze each of the lensing events. Our investigations reveal that these anomalies stem from a shared channel, wherein the source passed near the planetary caustic induced by a planet with projected separations from the host star exceeding the Einstein radius. We find that interpreting the anomaly of KMT-2021-BLG-2609 is complicated by the “inner–outer” degeneracy, whereas for KMT-2022-BLG-0303, there is no such issue despite similar lens-system configurations. In addition to this degeneracy, interpreting the anomaly in KMT-2021-BLG-2609 involves an additional degeneracy between a pair of solutions, in which the source partially envelops the caustic and the other three solutions in which the source fully envelopes the caustic. As in an earlier case of this so-called von Schlieffen–Cannae degeneracy, the former solutions have substantially higher mass ratio. Results.Through Bayesian analyses conducted based on the measured lensing observables of the event time scale and angular Einstein radius, the host of KMT-2021-BLG-2609L is determined to be a low-mass star with a mass ~0.2Min terms of a median posterior value, while the planet’s mass ranges from approximately 0.032 to 0.112 times that of Jupiter, depending on the solutions. For the planetary system KMT-2022-BLG-0303L, it features a planet with a mass of approximately 0.51MJand a host star with a mass of about 0.37M. In both cases, the lenses are most likely situated in the bulge. 
    more » « less
  5. Abstract Traditional microlensing event vetting methods require highly trained human experts, and the process is both complex and time consuming. This reliance on manual inspection often leads to inefficiencies and constrains the ability to scale for widespread exoplanet detection, ultimately hindering discovery rates. To address the limits of traditional microlensing event vetting, we have developed LensNet, a machine learning pipeline specifically designed to distinguish legitimate microlensing events from false positives caused by instrumental artifacts, such as pixel bleed trails and diffraction spikes. Our system operates in conjunction with a preliminary algorithm that detects increasing trends in flux. These flagged instances are then passed to LensNet for further classification, allowing for timely alerts and follow-up observations. Tailored for the multiobservatory setup of the Korea Microlensing Telescope Network and trained on a rich data set of manually classified events, LensNet is optimized for early detection and warning of microlensing occurrences, enabling astronomers to organize follow-up observations promptly. The internal model of the pipeline employs a multibranch Recurrent Neural Network architecture that evaluates time-series flux data with contextual information, including sky background, the full width at half-maximum of the target star, flux errors, point-spread function quality flags, and air mass for each observation. We demonstrate a classification accuracy above 87.5% and anticipate further improvements as we expand our training set and continue to refine the algorithm. 
    more » « less
    Free, publicly-accessible full text available February 20, 2026
  6. Abstract We report a free-floating planet (FFP) candidate identified from the analysis of the microlensing event KMT-2023-BLG-2669. The lensing light curve is characterized by a short duration (≲3 days) and a small amplitude (≲0.7 mag). From the analysis, we find an Einstein timescale oftE⋍ 0.33 days and an Einstein radius ofθE⋍ 4.41μas. These measurements enable us to infer the lens mass as M = 8 M π rel / 0.1 mas 1 , whereπrelis the relative lens–source parallax. The inference implies that the lens is a sub-Neptune- to Saturn-mass object, depending on its unknown distance. This is the ninth isolated planetary mass microlens withθE< 10μas, which is a useful threshold for an FFP candidate. We conduct extensive searches for possible signals of a host star in the light curve, but find no strong evidence for the host. We investigate the possibility of using late-time high-resolution imaging to probe for possible hosts. In particular, we discuss the case of finite-source point-lens FFP candidates, for which it would be possible to search for very-wide-separation hosts immediately, although such searches are “high risk, high reward.” 
    more » « less
  7. Abstract We present the analysis of a microlensing event KMT-2022-BLG-0086 of which the overall light curve is not described by a binary-lens single-source (2L1S) model, which suggests the existence of an extra lens or an extra source. We found that the event is best explained by the binary-lens binary-source (2L2S) model, but the 2L2S model is only favored over the triple-lens single-source (3L1S) model by Δχ2 ≃ 9. Although the event has noticeable anomalies around the peak of the light curve, they are not enough covered to constrain the angular Einstein radiusθE, thus we only measure the minimum angular Einstein radius θ E , min . From the Bayesian analysis, it is found that that the binary lens system is a binary star with masses of ( m 1 , m 2 ) = ( 0.4 6 0.25 + 0.35 M , 0.7 5 0.55 + 0.67 M ) at a distance of D L = 5.8 7 1.79 + 1.21 kpc, while the triple lens system is a brown dwarf or a massive giant planet in a low-mass binary-star system with masses of ( m 1 , m 2 , m 3 ) = ( 0.4 3 0.35 + 0.41 M , 0.05 6 0.047 + 0.055 M , 20.8 4 17.04 + 20.20 M J ) at a distance of D L = 4.0 6 3.28 + 1.39 kpc, indicating a disk lens system. The 2L2S model yields the relative lens-source proper motion ofμrel ≥ 4.6 mas yr−1that is consistent with the Bayesian result, whereas the 3L1S model yieldsμrel ≥ 18.9 mas yr−1, which is more than three times larger than that of a typical disk object of ∼6 mas yr−1and thus is not consistent with the Bayesian result. This suggests that the event is likely caused by the binary-lens binary-source model. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  8. Aims. The light curves of the microlensing events MOA-2022-BLG-091 and KMT-2024-BLG-1209 exhibit anomalies with very similar features. These anomalies appear near the peaks of the light curves, where the magnifications are moderately high, and are distinguished by weak caustic-crossing features with minimal distortion while the source remains inside the caustic. To achieve a deeper understanding of these anomalies, we conducted a comprehensive analysis of the lensing events. Methods. We carried out binary-lens modeling with a thorough exploration of the parameter space. This analysis revealed that the anomalies in both events are of planetary origin, although their exact interpretation is complicated by different types of degeneracy. In the case of MOA-2022-BLG-091, the main difficulty in the interpretation of the anomaly arises from a newly identified degeneracy related to the uncertain angle at which the source trajectory intersects the planet–host axis. For KMT-2024-BLG-1209, the interpretation is affected by the previously known inner-outer degeneracy, which leads to ambiguity between solutions in which the source passes through either the inner or outer caustic region relative to the planet host. Results. Bayesian analysis indicates that the planets in both lens systems are giant planets with masses about two to four times that of Jupiter, orbiting early K-type main-sequence stars. Both systems are likely located in the Galactic disk at a distance of around 4 kiloparsecs. The degeneracy in KMT-2024-BLG-1209 is challenging to resolve because it stems from intrinsic similarities in the caustic structures of the degenerate solutions. In contrast, the degeneracy in MOA-2022-BLG-091, which occurs by chance rather than from inherent characteristics, is expected to be resolved by the future space based Roman RGES microlensing survey. 
    more » « less
    Free, publicly-accessible full text available July 1, 2026
  9. Aims. We examined the anomalies in the light curves of the lensing events MOA-2022-BLG-033, KMT-2023-BLG-0119, and KMT- 2023-BLG-1896. These anomalies share similar traits: they occur near the peak of moderately to highly magnified events and display a distinct short-term dip feature. Methods. We conducted detailed modeling of the light curves to uncover the nature of the anomalies. This modeling revealed that all signals originated from planetary companions to the primary lens. The planet-to-host mass ratios are very low:q~ 7.5 × 10−5for MOA-2022-BLG-033,q~ 3.6 × 10−4for KMT-2023-BLG-0119, andq~ 6.9 × 10−5for KMT-2023-BLG-1896. The anomalies occurred as the source passed through the negative deviation region behind the central caustic along the planet-host axis. The solutions are subject to a common inner-outer degeneracy, which results in varying estimations of the projected planet-host separation. For KMT-2023-BLG-1896, although the planetary scenario provides the best explanation for the anomaly, the binary companion scenario is possible. Results. We estimated the physical parameters of the planetary systems through Bayesian analyses based on the lensing observables. While the event timescale was measured for all events, the angular Einstein radius was not measured for any. Additionally, the microlens parallax was measured for MOA-2022-BLG-033. The analysis identifies MOA-2022-BLG-033L as a planetary system with an ice giant with a mass of approximately 12 times that of Earth orbiting an early M dwarf star. The companion of KMT-2023-BLG-1896L is also an ice giant, with a mass of around 16 Earth masses, orbiting a mid-K-type main-sequence star. The companion of KMT-2023-BLG- 0119L, which has a mass around that of Saturn, orbits a mid-K-type dwarf star. The lens for MOA-2022-BLG-033 is highly likely to be located in the disk, whereas for the other events the probabilities of the lens being in the disk or the bulge are roughly equal. 
    more » « less
    Free, publicly-accessible full text available February 1, 2026
  10. Aims. Light curves of microlensing events occasionally deviate from the smooth and symmetric form of a single-lens single-source event. While most of these anomalous events can be accounted for by employing a binary-lens single-source (2L 1S) or a single-lens binary-source (1L2S) framework, it is established that a small fraction of events remain unexplained by either of these interpretations. We carried out a project in which data collected by high-cadence microlensing surveys were reinvestigated with the aim of uncovering the nature of anomalous lensing events with no proposed 2L 1S or 1L 2S models. Methods. From the project we found that the anomaly appearing in the lensing event OGLE-2023-BLG-0836 cannot be explained by the usual interpretations, and we conducted a comprehensive analysis of the event. From thorough modeling of the light curve under sophisticated lens-system configurations, we arrived at the conclusion that a triple-mass lens system is imperative to account for the anomalous features observed in the lensing light curve. Results. From the Bayesian analysis using the measured observables of the event timescale and angular Einstein radius, we determined that the least massive component of the lens has a planetary mass of 4.36−2.18+2.35MJ. This planet orbits within a stellar binary system composed of two stars with masses 0.71−0.36+0.38Mand 0.56−0.28+0.30M. This lensing event signifies the sixth occurrence of a planetary microlensing system in which a planet belongs to a stellar binary system. 
    more » « less